270 research outputs found

    Resilience of Luminance based Liveness Tests under Attacks with Processed Imposter Images

    Get PDF
    Liveness tests are techniques employed by face recognition authentication systems, aiming at verifying that a live face rather than a photo is standing in front of the system camera. In this paper, we study the resilience of a standard liveness test under imposter photo attacks, under the additional assumption that the photos used in the attack may have been processed by common image processing operations such as sharpening, smoothing and corruption with salt and pepper noise. The results verify and quantify the claim that this type of liveness tests rely on the imposter photo images being less sharp than live face images

    Eumelanin Graphene-Like Integration: The Impact on Physical Properties and Electrical Conductivity

    Get PDF
    The recent development of eumelanin pigment-based blends integrating "classical" organic conducting materials is expanding the scope of eumelanin in bioelectronics. Beyond the achievement of high conductivity level, another major goal lays in the knowledge and feasible control of structure/properties relationship. We systematically investigated different hybrid materials prepared by in situ polymerization of the eumelanin precursor 5,6-dihydroxyindole (DHI) in presence of various amounts of graphene-like layers. Spectroscopic studies performed by solid state nuclear magnetic resonance (ss-NMR), x-ray photoemission, and absorption spectroscopies gave a strong indication of the direct impact that the integration of graphene-like layers into the nascent polymerized DHI-based eumelanin has on the structural organization of the pigment itself, while infrared, and photoemission spectroscopies indicated the occurrence of negligible changes as concerns the chemical units. A tighter packing of the constituent units could represent a strong factor responsible for the observed improved electrical conductivity of the hybrid materials, and could be possible exploited as a tool for electrical conductivity tuning

    Hydrodesulfurization of light gas oil - kinetic determination in a batch reactor [Hidrodesulfurizacija lakog gasnog ulja - ispitivanje kinetike HDS u šaržnom reaktoru]

    Get PDF
    The performed investigations were directed toward the analysis of the performance and activity of the fresh and regenerated Cyanamid HDS 20C catalyst in a laboratory batch reactor (2 dm3) for the HDS of the diesel fraction (light gas oil, LGO). Testing of the regenerated catalyst was performed with light gas oil (LGO) of different characteristics. The determined values of the reaction rate constant were compared to some published data in the literature for the HDS of specific sulfur compounds as well as the values of the activation energy. The rates of deactivation of the fresh and regenerated catalyst actually existed compared to some other results recently published in the literature. However, such an observed differences were not sufficient to derive a relation which could be used for the determination of the rate of catalyst deactivation

    Hydrodesulfurization of light gas oil - kinetic determination in a batch reactor [Hidrodesulfurizacija lakog gasnog ulja - ispitivanje kinetike HDS u šaržnom reaktoru]

    Get PDF
    The performed investigations were directed toward the analysis of the performance and activity of the fresh and regenerated Cyanamid HDS 20C catalyst in a laboratory batch reactor (2 dm3) for the HDS of the diesel fraction (light gas oil, LGO). Testing of the regenerated catalyst was performed with light gas oil (LGO) of different characteristics. The determined values of the reaction rate constant were compared to some published data in the literature for the HDS of specific sulfur compounds as well as the values of the activation energy. The rates of deactivation of the fresh and regenerated catalyst actually existed compared to some other results recently published in the literature. However, such an observed differences were not sufficient to derive a relation which could be used for the determination of the rate of catalyst deactivation

    In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish

    Get PDF
    The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα− macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair

    Porcine liver vascular bed in Biodur E20 corrosion casts

    Get PDF
    Background: Pigs are frequently used as animal models in experimental medicine. To identify processes of vascular development or regression, vascular elements must be recognised and quantified in a three-dimensional (3D) arrangement. Vascular corrosion casts enable the creation of 3D replicas of vascular trees. The aim of our study was to identify suitable casting media and optimise the protocol for porcine liver vascular corrosion casting. Materials and methods: Mercox II® (Ladd Research, Williston, Vermont, USA) and Biodur E20® Plus (Biodur Products, Heidelberg, Germany) were tested in 4 porcine livers. The resins (volume approximately 700 mL) were injected via the portal vein. Corrosion casts were examined by macro-computed tomography, micro-computed tomography and scanning electron microscopy. Results: For hepatectomies, the operating protocol was optimised to avoid gas or blood clot embolisation. We present a protocol for porcine liver vascular bed casting based on corrosion specimens prepared using Biodur E20® epoxy resin. Conclusions: Only Biodur E20®Plus appeared to be suitable for high-volume vascular corrosion casting due to its optimal permeability, sufficient processing time and minimum fragility. Biodur E20® Plus is slightly elastic, radio-opaque and alcohol-resistant. These properties make this acrylic resin suitable for not only vascular research but also teaching purposes.

    Contribution to understanding the mathematical structure of quantum mechanics

    Full text link
    Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitudes, Born rule, commutation and uncertainty relations, probability density current, momentum operator, rules for including the scalar and vector potentials and antiparticles can be obtained from the probabilistic description of results of measurement of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schrodinger equation and Dirac equation are obtained from the requirement of the relativistic invariance of the space-time Fisher information. The limit case of the delta-like probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems and the postulates of quantum mechanics are also discussed.Comment: 21 page

    Shock pressure induced by 0.44 [mu]m laser radiation on aluminum targets

    Get PDF
    Shock pressure generated in aluminum targets due to the interaction of 0.44 μm (3 ω of iodine laser) laser radiation has been studied. The laser intensity profile was smoothed using phase zone plates. Aluminum step targets were irradiated at an intensity I ≈ 1014 W/cm2. Shock velocity in the aluminum target was estimated by detecting the shock luminosity from the target rear using a streak camera to infer the shock pressure. Experimental results show a good agreement with the theoretical model based on the delocalized laser absorption approximation. In the present report, we explicitly discuss the importance of target thickness on the shock pressure scaling
    corecore